Superlinear convergence of the affine scaling algorithm
نویسندگان
چکیده
In this paper we show that a variant of the long-step affine scaling algorithm (with variable stepsizes) is two-step superlinearly convergent when applied to general linear programming (LP) problems. Superlinear convergence of the sequence of dual estimates is also established. For homogeneous LP problems having the origin as the unique optimal solution, we also show that 2 is a sharp upper bound on the (fixed) stepsize that provably guarantees that the sequence of primal iterates converge to the optimal solution along a unique direction of approach. Since the point to which the sequence of dual estimates converge depend on the direction of approach of the sequence of primal iterates, this result gives a plausible (but not accurate) theoretical explanation for why ~ is a sharp upper bound on the (fixed) stepsize that guarantees the convergence of the dual estimates.
منابع مشابه
A Superlinear Infeasible-Interior-Point Affine Scaling Algorithm for LCP
We present an infeasible-interior-point algorithm for monotone linear complementarity problems in which the search directions are affine scaling directions and the step lengths are obtained from simple formulae that ensure both global and superlinear convergence. By choosing the value of a parameter in appropriate ways, polynomial complexity and convergence with Q-order up to (but not including...
متن کاملSuperlinear primal-dual affine scaling algorithms for LCP
We describe an interior-point algorithm for monotone linear complementarity problems in which primal-dual affine scaling is used to generate the search directions. The algorithm is shown to have global and superlinear convergence with Q-order up to (but not including) two. The technique is shown to be consistent with a potential-reduction algorithm, yielding the first potential-reduction algori...
متن کاملOn Superlinear Convergence of Infeasible Interior-Point Algorithms for Linearly Constrained Convex Programs
This note derives bounds on the length of the primal-dual affine scaling directions associated with a linearly constrained convex program satisfying the following conditions: 1) the problem has a solution satisfying strict complementarity, 2) the Hessian of the objective function satisfies a certain invariance property. We illustrate the usefulness of these bounds by establishing the superlinea...
متن کاملAn Affine Scaling Interior Algorithm via Conjugate Gradient and Lanczos Methods for Bound-constrained Nonlinear Optimization†
In this paper, we construct a new approach of affine scaling interior algorithm using the affine scaling conjugate gradient and Lanczos methods for bound constrained nonlinear optimization. We get the iterative direction by solving quadratic model via affine scaling conjugate gradient and Lanczos methods. By using the line search backtracking technique, we will find an acceptable trial step len...
متن کاملSuperlinear and quadratic convergence of affine-scaling interior-point Newton methods for problems with simple bounds without strict complementarity assumption
A class of affine-scaling interior-point methods for bound constrained optimization problems is introduced which are locally q–superlinear or q–quadratic convergent. It is assumed that the strong second order sufficient optimality conditions at the solution are satisfied, but strict complementarity is not required. The methods are modifications of the affine-scaling interior-point Newton method...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 75 شماره
صفحات -
تاریخ انتشار 1996